Providing connectivity to a massive number of devices is a key challenge in 5G wireless systems. In particular, it is crucial to develop efficient methods for active device identification and message decoding in a multi-cell network with fading, path loss, and delay uncertainties. This paper presents such a scheme using second-order Reed-Muller (RM) sequences and orthogonal frequency-division multiplexing (OFDM). For given positive integer $m$, a codebook is generated with up to $2^{m(m+3)/2}$ codewords of length $2^m$, where each codeword is a unique RM sequence determined by a matrix-vector pair with binary entries. This allows every device to send $m(m + 3)/2$ bits of information where an arbitrary number of these bits can be used to represent the identity of a node, and the remaining bits represent a message. There can be up to $2^{m(m+3)/2}$ different identities. Using an iterative algorithm, an access point can estimate the matrix-vector pairs of each nearby device, as long as not too many devices transmit in the same frame. It is shown that both the computational complexity and the error performance of the proposed algorithm exceed another state-of-the-art algorithm. The device identification and message decoding scheme developed in this work can serve as the basis for grant-free massive access for billions of devices with hundreds of simultaneously active devices in each cell.
翻译:提供大量设备的连接是5G无线系统的一项关键挑战。 特别是, 关键是要开发高效的方法, 用于在多细胞网络中进行积极的设备识别和电文解码, 且具有消退、 路径丢失和延迟不确定性。 本文使用二阶 Reed- Muller (RM) 序列和正方位频率分解多路转换( OFDM ) 来展示这样的计划。 对于正整数为百万元的, 生成一个代码簿, 其长度高达 2 ⁇ m( m+3)/2 美元 美元 的编码字号。 使用 $2 mm( m+3) /2 美元 的编码, 每个代码字串是一个独特的 RM 序列, 由带有二进制条目的矩阵- VC 配对确定。 这让每个设备发送 $mm( + 3) / /2 美元 位元信息中, 其中任意数的这些位数可以代表节点的身份, 其余的位数代表信息信息信息。 可能高达 2 ⁇ ( m+3 3) / /2} 不同身份。 使用迭代算算法,, 每个近端设备的矩阵的矩阵的组合的 RMMm- 配对, 只要不太多的运算算算算算算算算算算法显示一个不大于另一个的计算。