Consider a microphone array, such as those present in Amazon Echos, conference phones, or self-driving cars. One of the goals of these arrays is to decode the angles in which acoustic signals arrive at them. This paper considers the problem of estimating K angle of arrivals (AoA), i.e., the direct path's AoA and the AoA of subsequent echoes. Significant progress has been made on this problem, however, solutions remain elusive when the source signal is unknown (such as human voice) and the channel is strongly correlated (such as in multipath settings). Today's algorithms reliably estimate the direct-path-AoA, but the subsequent AoAs diverge in noisy real-world conditions. We design SubAoA, an algorithm that improves on the current body of work. Our core idea models signal in a new AoA sub-space, and employs a cancellation approach that successively cancels each AoA to decode the next. We explain the behavior and complexity of the algorithm from the first principles, simulate the performance across a range of parameters, and present results from real-world experiments. Comparison against multiple existing algorithms like GCC-PHAT, MUSIC, and VoLoc shows increasing gains for the latter AoAs, while our computation complexity allows real-time operation. We believe progress in multi-AoA estimation is a fundamental building block to various acoustic and RF applications, including human or vehicle localization, multi-user separation, and even (blind) channel estimation.


翻译:考虑一个麦克风阵列,比如亚马逊回声、会议电话或自动驾驶汽车中的麦克风阵列。这些阵列的目标之一是解码声频信号到达的角度。本文考虑估计K抵达角度(AoA)的问题,即直接路径AoA和随后回声的AoA。但在此问题上已取得重大进展,当源信号未知(如人的声音)和频道密切相关(如多路设置)时,解决方案仍然难以找到。今天的算法可靠地估计直接路径AoAoA,但随后的AoA在混乱的现实世界条件下出现的差异。我们设计了SOOA,这是一种改进当前工作的算法。我们的核心思想模型在新的AoA子空间发出信号,并采用取消方法,相继取消每个AoAoA的信号(如人的声音)来解码。我们解释了第一个原则的算法的行为和复杂性,模拟了各种参数的计算,甚至模拟了数字AAA的计算过程,以及当前在现实世界条件下出现的AA-A-A的计算结果。我们设计SIC-A-A(包括实际-A-MA-AL的计算)的多重算法实验显示了多重的多重分析结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
29+阅读 · 2020年4月8日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月18日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
29+阅读 · 2020年4月8日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员