Recent work has shown that sparse graphs containing many triangles cannot be reproduced using a finite-dimensional representation of the nodes, in which link probabilities are inner products. Here, we show that such graphs can be reproduced using an infinite-dimensional inner product model, where the node representations lie on a low-dimensional manifold. Recovering a global representation of the manifold is impossible in a sparse regime. However, we can zoom in on local neighbourhoods, where a lower-dimensional representation is possible. As our constructions allow the points to be uniformly distributed on the manifold, we find evidence against the common perception that triangles imply community structure.
翻译:最近的研究表明,包含许多三角形的稀疏图无法使用节点的有限维表示来复制,其中链接概率是内积。在这里,我们展示了这样的图可以使用使用无限维内积模型来复原,在该模型中,节点表示位于低维流形上。在稀疏条件下,恢复流形的全局表示是不可能的。然而,我们可以集中到局部邻域,其中较低维度的表示是可能的。由于我们的构造允许点在流形上均匀分布,我们发现证据反对常见的三角形意味着社区结构的看法。