We study the problem of optimal power allocation in single-hop multi-antenna ad-hoc wireless networks. A standard technique to solve this problem involves optimizing a tri-convex function under power constraints using a block-coordinate-descent based iterative algorithm. This approach, termed WMMSE, tends to be computationally complex and time consuming. Several learning-based approaches have been proposed to speed up the power allocation process. A recent work, UWMMSE, learns an affine transformation of a WMMSE parameter in an unfolded structure to accelerate convergence. In spite of achieving promising results, its application is limited to single-antenna wireless networks. In this work, we present a UWMMSE framework for power allocation in (multiple-input multiple-output) MIMO interference networks. A major advantage of this method lies in its use of low-complexity learnable systems in which the number of parameters scales linearly with respect to the hidden layer size of embedded neural architectures and the product of the number of transmitter and receiver antennas only, fully independent of the number of transceivers in the network. We illustrate the superiority of our method through an empirical study of our approach in comparison to WMMSE and also analyze its robustness to changes in channel conditions and network size.


翻译:我们研究的是单速多ANTANNA ad-hoc无线网络的最佳电力分配问题。解决这个问题的标准技术是利用基于区际协调的日光迭代算法优化电力限制下的三子电流功能。这种方法称为WMMSE, 往往在计算上复杂而耗时。提出了几种基于学习的方法以加快电力分配过程。最近的一项工作,UWMMSE在一个扩展的结构中学习了WMMSE参数的近距离转换,以加速融合。尽管取得了有希望的结果,但其应用仅限于单安无线网络。在这项工作中,我们提出了一个UWMMSE用于(多输出多输出多输出)MIMIM干涉网络中电力分配的框架。这种方法的一个主要优势在于它利用了低兼容度的学习系统,在这些系统中,与嵌入的神经结构的隐藏层大小以及发射机和接收天线数量相比,完全独立于网络中转录器的数量。我们通过对网络的磁率分析方法的优势。我们通过实验性研究来分析网络中的磁度。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
专知会员服务
76+阅读 · 2021年3月16日
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
专知会员服务
52+阅读 · 2020年9月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
已删除
将门创投
5+阅读 · 2018年10月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月31日
Arxiv
0+阅读 · 2021年12月30日
Arxiv
0+阅读 · 2021年12月28日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
已删除
将门创投
5+阅读 · 2018年10月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员