Reconfigurable intelligent surface (RIS) is very promising for wireless networks to achieve high energy efficiency, extended coverage, improved capacity, massive connectivity, etc. To unleash the full potentials of RIS-aided communications, acquiring accurate channel state information is crucial, which however is very challenging. For RIS-aided multiple-input and multiple-output (MIMO) communications, the existing channel estimation methods have computational complexity growing rapidly with the number of RIS units $N$ (e.g., in the order of $N^2$ or $N^3$) and/or have special requirements on the matrices involved (e.g., the matrices need to be sparse for algorithm convergence to achieve satisfactory performance), which hinder their applications. In this work, instead of using the conventional signal model in the literature, we derive a new signal model obtained through proper vectorization and reduction operations. Then, leveraging the unitary approximate message passing (UAMP), we develop a more efficient channel estimator that has complexity linear with $N$ and does not have special requirements on the relevant matrices, thanks to the robustness of UAMP. These facilitate the applications of the proposed algorithm to a general RIS-aided MIMO system with a larger $N$. Moreover, extensive numerical results show that the proposed estimator delivers much better performance and/or requires significantly less number of training symbols, thereby leading to notable reductions in both training overhead and latency.


翻译:对无线网络来说,重新配置智能表面(RIS)对于无线网络实现高能效、扩大覆盖面、提高能力、扩大连通性等非常有希望。 为了充分发挥RIS辅助通信的潜力,获取准确的频道状态信息至关重要,然而,这却非常具有挑战性。对于有RIS辅助的多投入和多产出(MIIMO)通信而言,现有频道估算方法的计算复杂性随着RIS单位数目(美元)的传递而迅速增长(例如,约合2美元或3美元)和(或)对所涉矩阵有特殊要求(例如,矩阵需要稀缺,使算法趋同才能达到令人满意的性能),这阻碍了它们的应用。在这项工作中,我们不是使用文献中的常规信号模型,而是通过适当的传压和减少操作获得的新信号模型。 然后,利用统一的近似信息传递的数量(UAMP),我们开发一个效率更高的频道估算器,它以美元为直线,对相关矩阵没有特殊要求,因为UAMAP/IMA的强大程度,这些应用方式使得拟议的通用系统业绩大大降低。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
【论文推荐】文本摘要简述
专知会员服务
69+阅读 · 2020年7月20日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
【论文推荐】文本摘要简述
专知会员服务
69+阅读 · 2020年7月20日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员