We consider the irreducibility of switch-based Markov chains for the approximate uniform sampling of Hamiltonian cycles in a given undirected dense graph on $n$ vertices. As our main result, we show that every pair of Hamiltonian cycles in a graph with minimum degree at least $n/2+7$ can be transformed into each other by switch operations of size at most $10$, implying that the switch Markov chain using switches of size at most $10$ is irreducible. As a proof of concept, we also show that this Markov chain is rapidly mixing on dense monotone graphs.
翻译:我们认为,以开关为基础的Markov链条对于汉密尔顿周期的大致统一抽样来说是不可减少的,以无方向密集的图表形式对汉密尔顿周期进行大致统一抽样的。 作为我们的主要结果,我们显示,在最低程度至少为0.2+7美元的图表中,每对汉密尔顿周期都可以通过最多为10美元的开关操作相互转换,这意味着使用最多为10美元的大小开关的Markov链条是无法减少的。作为概念的证明,我们还表明,这一马尔科夫链条正在迅速混合在密度大的单调式图形上。