Investigating the problem of setting control limits in the case of parameter uncertainty is more accessible when monitoring the variance because only one parameter has to be estimated. Simply ignoring the induced uncertainty frequently leads to control charts with poor false alarm performances. Adjusting the unconditional in-control (IC) average run length (ARL) makes the situation even worse. Guaranteeing a minimum conditional IC ARL with some given probability is another very popular approach to solving these difficulties. However, it is very conservative as well as more complex and more difficult to communicate. We utilize the probability of a false alarm within the planned number of points to be plotted on the control chart. It turns out that adjusting this probability produces notably different limit adjustments compared to controlling the unconditional IC ARL. We then develop numerical algorithms to determine the respective modifications of the upper and two-sided exponentially weighted moving average (EWMA) charts based on the sample variance for normally distributed data. These algorithms are made available within an R package. Finally, the impacts of the EWMA smoothing constant and the size of the preliminary sample on the control chart design and its performance are studied.


翻译:在监测差异时,比较容易了解在参数不确定性情况下确定控制限度的问题,因为只需要估计一个参数即可监测差异。只要忽略诱发的不确定性,往往导致控制图表的错误警报性能差。调整无条件控制(IC)的平均运行长度(ARL)使情况更加糟糕。保证最低有条件的ICARL(有一定的概率)是解决这些困难的另一种非常受欢迎的办法。然而,它非常保守,复杂,而且更难沟通。我们利用在计划绘制的控制图表中点数内出现虚假警报的概率。我们发现,调整这一概率会产生与控制无条件控制IC ARL相比的明显不同的限制调整。然后,我们根据通常分发的数据的样本差异,制定数字算法,确定上部和两面的指数平均移动图的分别修改。这些算法在R包中提供。最后,研究了EWMA平滑常数的影响以及初步抽样对控制图设计及其性能的大小。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月4日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员