Hamiltonian Monte Carlo (HMC) is a state-of-the-art Markov chain Monte Carlo sampling algorithm for drawing samples from smooth probability densities over continuous spaces. We study the variant most widely used in practice, Metropolized HMC with the St\"{o}rmer-Verlet or leapfrog integrator, and make two primary contributions. First, we provide a non-asymptotic upper bound on the mixing time of the Metropolized HMC with explicit choices of step-size and number of leapfrog steps. This bound gives a precise quantification of the faster convergence of Metropolized HMC relative to simpler MCMC algorithms such as the Metropolized random walk, or Metropolized Langevin algorithm. Second, we provide a general framework for sharpening mixing time bounds of Markov chains initialized at a substantial distance from the target distribution over continuous spaces. We apply this sharpening device to the Metropolized random walk and Langevin algorithms, thereby obtaining improved mixing time bounds from a non-warm initial distribution.
翻译:汉密尔顿·蒙特卡洛(HMC)是利用连续空间平滑概率密度提取样本的最先进的Markov链条Monte Carlo取样算法。我们研究了实践中最常用的变方,即St\"{o}rrmer-Verlet或跳蛙集成器的Metropo化 HMC,并做出了两项主要贡献。首先,我们为Metropo化 HMC的混合时间提供了一个非自动上层约束,明确选择了步态大小和跳蛙步数。这一缩法精确地量化了Metropo化 HMC相对于更简单的 MMC算法,如Metropo化随机行走或Metropolized Langevin算法的更快的结合。第二,我们提供了一个总框架,用于在距离连续空间的目标分布很远的地方初始开始的Markov 链的精密混合时间圈。我们把这种精锐装置应用于Metropo化随机行走法和Langevin算法,从而从非暖初步分布中获得更好的混合时间界限。