We consider an elliptic linear-quadratic parameter estimation problem with a finite number of parameters. A novel a priori bound for the parameter error is proved and, based on this bound, an adaptive finite element method driven by an a posteriori error estimator is presented. Unlike prior results in the literature, our estimator, which is composed of standard energy error residual estimators for the state equation and suitable co-state problems, reflects the faster convergence of the parameter error compared to the (co)-state variables. We show optimal convergence rates of our method; in particular and unlike prior works, we prove that the estimator decreases with a rate that is the sum of the best approximation rates of the state and co-state variables. Experiments confirm that our method matches the convergence rate of the parameter error.
翻译:我们用数量有限的参数来考虑椭圆线性赤道参数估计问题。 一种针对参数错误的新颖的先验法得到了证明, 并且基于这一约束, 展示了一种由后验误估计器驱动的适应性有限元素方法。 与先前的文献结果不同, 我们的估算器由州方和适当的共同国家问题的标准能量差剩余估计器组成, 反映了参数差与( co) 状态变量的更快趋同率。 我们显示了我们方法的最佳趋同率; 特别是, 与先前的工程不同, 我们证明估计器下降率是州和共同国家变量的最佳近似率之和。 实验证实我们的方法与参数差的趋同率相符 。