Although Convolutional Neural Networks (CNN) have made good progress in image restoration, the intrinsic equivalence and locality of convolutions still constrain further improvements in image quality. Recent vision transformer and self-attention have achieved promising results on various computer vision tasks. However, directly utilizing Transformer for image restoration is a challenging task. In this paper, we introduce an effective hybrid architecture for sand image restoration tasks, which leverages local features from CNN and long-range dependencies captured by transformer to improve the results further. We propose an efficient hybrid structure for sand dust image restoration to solve the feature inconsistency issue between Transformer and CNN. The framework complements each representation by modulating features from the CNN-based and Transformer-based branches rather than simply adding or concatenating features. Experiments demonstrate that SandFormer achieves significant performance improvements in synthetic and real dust scenes compared to previous sand image restoration methods.


翻译:虽然革命神经网络(CNN)在图像恢复方面取得了良好进展,但内在等同和变化地点仍然制约着图像质量的进一步改善。最近的视觉变异器和自我关注在各种计算机愿景任务上取得了可喜的成果。然而,直接利用变异器恢复图像是一项艰巨的任务。在本文件中,我们引入了沙图像恢复任务的有效混合结构,利用CNN和变异器捕获的长期依赖性地方特征进一步改进结果。我们提出了沙尘图像恢复高效混合结构,以解决变异器和CNN之间的特征不一致问题。该框架通过调制CNN和变异器分支的特征,而不是简单地添加或组合特征来补充每一种表现形式。实验表明,SandFormer在合成和真实的灰色场上取得了与以往的沙图像恢复方法相比的重大性能改进。</s>

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月28日
Arxiv
17+阅读 · 2022年2月23日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员