In biomedical imaging, deep learning-based methods are state-of-the-art for every modality (virtual slides, MRI, etc.) In histopathology, these methods can be used to detect certain biomarkers or classify lesions. However, such techniques require large amounts of data to train high-performing models which can be intrinsically difficult to acquire, especially when it comes to scarce biomarkers. To address this challenge, we use a single, pre-trained, deep embeddings extractor to convert images into deep features and train small, dedicated classification head on these embeddings for each classification task. This approach offers several benefits such as the ability to reuse a single pre-trained deep network for various tasks; reducing the amount of labeled data needed as classification heads have fewer parameters; and accelerating training time by up to 1000 times, which allows for much more tuning of the classification head. In this work, we perform an extensive comparison of various open-source backbones and assess their fit to the target histological image domain. This is achieved using a novel method based on a proxy classification task. We demonstrate that thanks to this selection method, an optimal feature extractor can be selected for different tasks on the target domain. We also introduce a feature space augmentation strategy which proves to substantially improve the final metrics computed for the different tasks considered. To demonstrate the benefit of such backbone selection and feature-space augmentation, our experiments are carried out on three separate classification tasks and show a clear improvement on each of them: microcalcifications (29.1% F1-score increase), lymph nodes metastasis (12.5% F1-score increase), mitosis (15.0% F1-score increase).


翻译:在生物医学成像中,基于深层次学习的方法是每种模式(虚拟幻灯片、磁共振等)的最先进方法。 在生理病理学中,这些方法可用于检测某些生物标志或对损伤进行分类。然而,这些技术需要大量数据来培训高性能模型,这些模型在本质上很难获得,特别是对于稀少的生物标志而言,这些模型在本质上很难获得。为了应对这一挑战,我们使用单一的、预先训练的、深层嵌入提取器,将图像转换为深度特征,并训练小型的、专门的分类头,用于为每项分类任务嵌入这些嵌入。这个方法提供了若干好处,例如能够重新利用一个经过预先训练的单一深层网络执行各种任务;由于分类的参数较少,减少所需的贴标签数据数量;以及加速培训时间,使分类头部能够进行更多的调整。在这项工作中,我们对各种开源骨干进行广泛的比较,并评估其与目标直方图像域域域域的匹配程度。5 这种方法可以使用基于代理分类任务的新的方法实现,我们想当然地评估了一种最高级的地平基级改进任务,我们所选择的地平基部分1 。我们通过这种选择了一种最高级的地平基域图图图图图图图图图图图图 。我们通过了一种选择了一种选择了一种选择了一种选择了一种选择了一种选择了一种选择了一种最高级的地基岩质地基岩质地格 。我们。我们,我们,我们用一种选择了一种选择了一种选择了一种选择了一种选择了一种不同的地基岩体格 。我们用的方法,我们用的方法,我们用的方法,我们用一种不同的地格上的地格的地格上的地基岩格的地格上的地格上的地块图,我们用一种方法,我们用一种方法,我们用一种方法,我们想了一种方法,我们用一种方法,我们用一种方法,我们用一种方法,我们用了一种方法,我们用了一种不同的地基岩图图图图图图图图图图图图上的地基地基岩体格上的地基图图图图图图图图图图图图的地基岩层图比地基岩体格上的推法, 。</s>

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月1日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员