This paper technically explores the secrecy outage probability (SOP) $\Lambda$ and a minimisation problem over it as $\mathop{{\rm \mathbb{M}in}}\limits_{(\cdot) } {\rm \; } \mathbb{P}\mathscr{r} \big( \Lambda \ge \lambda \big) $. We consider a Riemannian manifold for it and we mathematically define a volume for it as $\mathbb{V}\mathscr{ol}\big \lbrace \Lambda \big \rbrace$. Through achieving a new upper-bound for the Riemannian manifold and its volume, we subsequently relate it to the number of eigenvalues existing in the relative probabilistic closure. We prove in-between some novel lemmas with the aid of some useful inequalities such as the Finsler's lemma, the generalised Young's inequality, the generalised Brunn-Minkowski inequality, the Talagrand's concentration inequality.
翻译:本文在技术上探索了保密性中断概率( SOP) $\ Lambda$ 和它的最小化问题 $\ mothopp ⁇ rm\ mathbb{M}in limits}}( cdot) } {rm\ \ \ ;}\ mathbb{P\\ mathscr{r}\ bigh (Lambda\ ge\ lambda\ big) $ 。 我们考虑的是riemann 的方块, 我们在数学上定义它的音量为 $\ mathbb{V\ mathscr{ol\ big\ lbrace \ lambda\ lambda\ \ bigh\ rbrbrcreat$ 。 通过为riemannian 方块及其音量实现新的上限, 我们随后将它与相对不稳定性封闭状态中存在的电子价值的数量联系起来。 我们证明一些新莱曼的利玛 和一些有用的不平等的帮助, 例如 Finsler's Lemma, 例如 Finslama, 、 一般的You' grannlumn' s glaglann' s glabilmis。