项目名称: 数据流发布中的隐私保护理论和方法研究

项目编号: No.61502111

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 自动化技术、计算机技术

项目作者: 王金艳

作者单位: 广西师范大学

项目金额: 20万元

中文摘要: 由于数据共享的紧迫需求以及公众对隐私问题的担忧,数据发布中的隐私保护问题已成为数据库与信息安全领域交叉的研究热点。数据流具有海量性、实时性和动态变化性,这对传统的针对静态数据集发布的隐私保护模型、数据可用性度量方法和隐私保护方法提出了严重的挑战。本项目针对关系型数据流和高维集值型数据流发布中的隐私保护问题展开研究。首先利用流推理语言等分别针对关系型数据流和集值型数据流对攻击者的背景知识进行建模,提出相应的隐私保护模型,同时利用集合论、模糊数等综合考虑数据的信息损失和时延提出数据可用性度量方法。在此基础上,利用熵理论、进化算法、模糊集理论、软集理论等针对关系型数据流和集值型数据流的发布分别提出相应的隐私保护方法。项目的研究将为数据流发布提供系统的隐私保护理论和方法,对经济发展、社会稳定以及互联网技术的有效利用具有重要的推动作用。

中文关键词: 数据发布;隐私保护;隐私模型;数据可用性;背景知识

英文摘要: Privacy preserving data publishing is a hot research topic in the crossover field between databases and information security, because of the urgent requirement for information sharing and the public fear for privacy leakage. Data streams are massive, real-time and volatile, and the privacy protection models, measure of data utility and privacy preserving techniques for static data publishing cannot be applied on streaming data. The project researches on the privacy preserving problem for publishing relational data streams and high-dimensional set-valued data streams. Firstly, we model the background knowledge of attacks by using stream reasoning language, and present privacy protection models in relational data streams and set-valued data streams, respectively. Also, we analyze data information loss and time delay by using set theory, fuzzy number, etc., to give the method to measure the data utility. Furthermore, we utilize well-developed theories such as entropy theory, evolutionary computation, fuzzy set theory, soft set theory, to design privacy preserving techniques for publishing relational data streams and set-valued data streams, respectively. The project will offer systematic theories and methods for privacy preserving data streams publishing, and promote economic developments, social stability and the efficient use of internet technology.

英文关键词: Data publishing;Privacy preserving;Privacy model;Data utility;Background knowledge

成为VIP会员查看完整内容
7

相关内容

《人脸识别数据安全标准化研究报告(2021版)》发布
专知会员服务
33+阅读 · 2022年1月2日
【博士论文】推荐系统多行为建模与隐私保护研究
专知会员服务
53+阅读 · 2021年11月27日
专知会员服务
35+阅读 · 2021年10月17日
专知会员服务
81+阅读 · 2021年7月28日
专知会员服务
93+阅读 · 2021年7月23日
专知会员服务
52+阅读 · 2021年3月28日
专知会员服务
113+阅读 · 2020年11月16日
机器学习模型安全与隐私研究综述
专知会员服务
112+阅读 · 2020年11月12日
专知会员服务
127+阅读 · 2020年8月7日
「联邦学习隐私保护 」最新2022研究综述
专知
16+阅读 · 2022年4月1日
视频隐私保护技术综述
专知
3+阅读 · 2022年1月19日
区块链数据安全服务综述
专知
2+阅读 · 2021年11月10日
医疗健康大数据隐私保护综述
专知
3+阅读 · 2021年3月28日
综述——隐私保护集合交集计算技术研究
计算机研究与发展
22+阅读 · 2017年10月24日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关VIP内容
《人脸识别数据安全标准化研究报告(2021版)》发布
专知会员服务
33+阅读 · 2022年1月2日
【博士论文】推荐系统多行为建模与隐私保护研究
专知会员服务
53+阅读 · 2021年11月27日
专知会员服务
35+阅读 · 2021年10月17日
专知会员服务
81+阅读 · 2021年7月28日
专知会员服务
93+阅读 · 2021年7月23日
专知会员服务
52+阅读 · 2021年3月28日
专知会员服务
113+阅读 · 2020年11月16日
机器学习模型安全与隐私研究综述
专知会员服务
112+阅读 · 2020年11月12日
专知会员服务
127+阅读 · 2020年8月7日
相关资讯
「联邦学习隐私保护 」最新2022研究综述
专知
16+阅读 · 2022年4月1日
视频隐私保护技术综述
专知
3+阅读 · 2022年1月19日
区块链数据安全服务综述
专知
2+阅读 · 2021年11月10日
医疗健康大数据隐私保护综述
专知
3+阅读 · 2021年3月28日
综述——隐私保护集合交集计算技术研究
计算机研究与发展
22+阅读 · 2017年10月24日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员