We present a framework to generate periodic trajectory references for a 3D under-actuated bipedal robot, using a linear inverted pendulum (LIP) based controller with adaptive neural regulation. We use the LIP template model to estimate the robot's center of mass (CoM) position and velocity at the end of the current step, and formulate a discrete controller that determines the next footstep location to achieve a desired walking profile. This controller is equipped on the frontal plane with a Neural-Network-based adaptive term that reduces the model mismatch between the template and physical robot that particularly affects the lateral motion. Then, the foot placement location computed for the LIP model is used to generate task space trajectories (CoM and swing foot trajectories) for the actual robot to realize stable walking. We use a fast, real-time QP-based inverse kinematics algorithm that produces joint references from the task space trajectories, which makes the formulation independent of the knowledge of the robot dynamics. Finally, we implemented and evaluated the proposed approach in simulation and hardware experiments with a Digit robot obtaining stable periodic locomotion for both cases.
翻译:我们提出了一个框架,用于为3D 低活性双胞胎机器人生成定期轨迹参考, 使用直线倒转控制器( LIP), 带有适应性神经调节。 我们使用 LIP 模板模型模型来估计当前步骤末的机器人质量中心( COM) 位置和速度, 并开发一个离散控制器, 以决定下一个脚步位置, 以获得理想的行走剖面。 该控制器在前平面上配备了一个基于神经网络的适应性术语, 以减少模板和特别影响横向运动的物理机器人之间的模型不匹配。 然后, 为 LIP 模型计算的脚放置位置被用于生成任务空间轨迹( ComM 和 摇摆脚轨), 以实际机器人实现稳定的行走。 我们使用快速、 实时的 QP 反动算法, 从任务空间轨迹中产生联合引用, 使模型的配方独立于机器人动态的知识。 最后, 我们用数字机器人的模拟和硬件实验方法实施并评价了提议的方法, 获得稳定的定期移动的机器人。