Deep saliency prediction algorithms complement the object recognition features, they typically rely on additional information, such as scene context, semantic relationships, gaze direction, and object dissimilarity. However, none of these models consider the temporal nature of gaze shifts during image observation. We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals by exploiting human temporal attention patterns. Our approach locally modulates the saliency predictions by combining the learned temporal maps. Our experiments show that our method outperforms the state-of-the-art models, including a multi-duration saliency model, on the SALICON benchmark. Our code will be publicly available on GitHub.
翻译:深显性预测算法补充了天体识别特征,它们通常依赖更多的信息,如场景背景、语义关系、凝视方向和天体差异等。 但是,这些模型都没有考虑图像观测时视向变化的时间性质。 我们引入了一种新的显著预测模型,通过利用人类时间关注模式,学习在相继时间间隔中绘制突出的地图。 我们的本地方法结合了已学过的时间分布图,调整了显著的预测。 我们的实验显示,我们的方法超过了SALICON基准上的最新模型,包括多度特征模型。 我们的代码将在GitHub上公布。