Recent research in deep learning has shown that neural networks can learn differential equations governing dynamical systems. In this paper, we adapt this concept to Virtual Analog (VA) modeling to learn the ordinary differential equations (ODEs) governing the first-order and the second-order diode clipper. The proposed models achieve performance comparable to state-of-the-art recurrent neural networks (RNNs) albeit using fewer parameters. We show that this approach does not require oversampling and allows to increase the sampling rate after the training has completed, which results in increased accuracy. Using a sophisticated numerical solver allows to increase the accuracy at the cost of slower processing. ODEs learned this way do not require closed forms but are still physically interpretable.
翻译:最近的深层学习研究表明,神经网络可以学习关于动态系统的差别方程式。 在本文中,我们将这一概念改用虚拟分析模型(VA)模型来学习关于一阶和二阶二极管剪切器的普通差方程式(ODEs ) 。 拟议的模型的性能可以与最先进的经常性神经网络(RNN)相比,尽管使用较少的参数。 我们表明,这种方法不需要过度抽样,可以在培训完成后提高取样率,从而提高准确性。 使用先进的数字求解器可以提高精度,而成本是慢处理。 数字解析器学会了这种方法,不需要封闭的形式,但实际上仍然可以解释。