In this paper, we propose PanoViT, a panorama vision transformer to estimate the room layout from a single panoramic image. Compared to CNN models, our PanoViT is more proficient in learning global information from the panoramic image for the estimation of complex room layouts. Considering the difference between a perspective image and an equirectangular image, we design a novel recurrent position embedding and a patch sampling method for the processing of panoramic images. In addition to extracting global information, PanoViT also includes a frequency-domain edge enhancement module and a 3D loss to extract local geometric features in a panoramic image. Experimental results on several datasets demonstrate that our method outperforms state-of-the-art solutions in room layout prediction accuracy.
翻译:在本文中, 我们提议 PanoViT 是一个全景视觉变异器, 用一个全景图像来估计房间布局。 与CNN模型相比, 我们的 PanoViT 更熟练地从全景图像中学习全球信息来估计复杂的房间布局。 考虑到视觉图像和全景图像之间的差别, 我们设计了一个新颖的重复嵌入位置和处理全景图像的补丁抽样方法。 除了提取全球信息外, PanoViT 还包括一个频率- 域边缘增强模块和一个 3D 损失来提取全景图像中的本地几何特征。 几个数据集的实验结果显示, 我们的方法比室布局预测的准确性更优于最先进的解决方案 。