This paper investigates limiting spectral distribution of a high-dimensional Kendall's rank correlation matrix. The underlying population is allowed to have general dependence structure. The result no longer follows the generalized Mar\u{c}enko-Pastur law which is a brand new limiting spectral distribution for sample covariance/correlation matrices. It's the first result on rank correlation matrices with dependence. As applications, we study the Kendall's rank correlation matrix for multivariate normal distributions with a general covariance matrix. From these results, we further gain insights of Kendall's rank correlation matrix and its connections with the sample covariance/correlation matrix.
翻译:本文研究限制高维肯德尔级相关矩阵的光谱分布。 允许基础人口具有一般依赖性结构。 其结果不再遵循通用的 Mar\ u{ c}enko- Pastur 法, 这部法律是用于样本共变/ corlation 矩阵的新型限制光谱分布。 这是关于具有依赖性的级相关矩阵的第一个结果 。 作为应用, 我们研究肯德尔的级相关矩阵, 用于使用普通共变矩阵的多变量正常分布。 通过这些结果, 我们进一步了解肯德尔级相关矩阵及其与样本共变/ corration 矩阵的关联。