Modeling user-item interaction patterns is an important task for personalized recommendations. Many recommender systems are based on the assumption that there exists a linear relationship between users and items while neglecting the intricacy and non-linearity of real-life historical interactions. In this paper, we propose a neural network based recommendation model (NeuRec) that untangles the complexity of user-item interactions and establishes an integrated network to combine non-linear transformation with latent factors. We further design two variants of NeuRec: user-based NeuRec and item-based NeuRec, by concentrating on different aspects of the interaction matrix. Extensive experiments on four real-world datasets demonstrated their superior performances on personalized ranking task.
翻译:建立用户-项目互动模式是个人化建议的一项重要任务。许多推荐人系统所依据的假设是,用户和项目之间存在线性关系,而忽视了真实历史互动的复杂性和非线性。在本文件中,我们提出了一个基于神经网络的建议模型(NeuRec),该模型可以解开用户-项目互动的复杂性,并建立一个综合网络,将非线性转换与潜在因素结合起来。我们进一步设计了NeuRec的两个变式:基于用户的NeuRec和基于项目的NeuRec,侧重于互动矩阵的不同方面。关于四个真实世界数据集的广泛实验显示了它们在个人化排名任务方面的优异性。