Deep Neural Networks (DNNs) have shown great success in completing complex tasks. However, DNNs inevitably bring high computational cost and storage consumption due to the complexity of hierarchical structures, thereby hindering their wide deployment in Internet-of-Things (IoT) devices, which have limited computational capability and storage capacity. Therefore, it is a necessity to investigate the technologies to compact DNNs. Despite tremendous advances in compacting DNNs, few surveys summarize compacting-DNNs technologies, especially for IoT applications. Hence, this paper presents a comprehensive study on compacting-DNNs technologies. We categorize compacting-DNNs technologies into three major types: 1) network model compression, 2) Knowledge Distillation (KD), 3) modification of network structures. We also elaborate on the diversity of these approaches and make side-by-side comparisons. Moreover, we discuss the applications of compacted DNNs in various IoT applications and outline future directions.
翻译:深神经网络(DNN)在完成复杂任务方面表现出巨大的成功,然而,由于等级结构的复杂性,DNN不可避免地带来高昂的计算成本和储存消耗,从而阻碍了它们在计算能力和储存能力有限的互联网(IOT)装置中的广泛应用,因此,有必要调查对压缩DNN的技术。尽管在压缩DNN方面取得了巨大进展,但很少的调查总结了压缩-DNN技术,特别是用于IOT应用的技术。因此,本文介绍了关于压缩-DNN技术的全面研究。我们将紧凑-DNN技术分为三大类:1)网络模型压缩,2)知识蒸馏(KD),3)网络结构的修改。我们还详细阐述了这些方法的多样性,并逐边进行比较。此外,我们讨论了压缩DNNN在各种IOT应用中的应用,并概述了未来方向。