Deep Neural Networks (DNNs) have shown great success in completing complex tasks. However, DNNs inevitably bring high computational cost and storage consumption due to the complexity of hierarchical structures, thereby hindering their wide deployment in Internet-of-Things (IoT) devices, which have limited computational capability and storage capacity. Therefore, it is a necessity to investigate the technologies to compact DNNs. Despite tremendous advances in compacting DNNs, few surveys summarize compacting-DNNs technologies, especially for IoT applications. Hence, this paper presents a comprehensive study on compacting-DNNs technologies. We categorize compacting-DNNs technologies into three major types: 1) network model compression, 2) Knowledge Distillation (KD), 3) modification of network structures. We also elaborate on the diversity of these approaches and make side-by-side comparisons. Moreover, we discuss the applications of compacted DNNs in various IoT applications and outline future directions.


翻译:深神经网络(DNN)在完成复杂任务方面表现出巨大的成功,然而,由于等级结构的复杂性,DNN不可避免地带来高昂的计算成本和储存消耗,从而阻碍了它们在计算能力和储存能力有限的互联网(IOT)装置中的广泛应用,因此,有必要调查对压缩DNN的技术。尽管在压缩DNN方面取得了巨大进展,但很少的调查总结了压缩-DNN技术,特别是用于IOT应用的技术。因此,本文介绍了关于压缩-DNN技术的全面研究。我们将紧凑-DNN技术分为三大类:1)网络模型压缩,2)知识蒸馏(KD),3)网络结构的修改。我们还详细阐述了这些方法的多样性,并逐边进行比较。此外,我们讨论了压缩DNNN在各种IOT应用中的应用,并概述了未来方向。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
49+阅读 · 2020年12月16日
Arxiv
8+阅读 · 2020年10月7日
Compression of Deep Learning Models for Text: A Survey
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员