We prove that the Minimum Distance Problem (MDP) on linear codes over any fixed finite field and parameterized by the input distance bound is W[1]-hard to approximate within any constant factor. We also prove analogous results for the parameterized Shortest Vector Problem (SVP) on integer lattices. Specifically, we prove that SVP in the $\ell_p$ norm is W[1]-hard to approximate within any constant factor for any fixed $p >1$ and W[1]-hard to approximate within a factor approaching $2$ for $p=1$. (We show hardness under randomized reductions in each case.) These results answer the main questions left open (and explicitly posed) by Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx (Journal of the ACM, 2021) on the complexity of parameterized MDP and SVP. For MDP, they established similar hardness for binary linear codes and left the case of general fields open. For SVP in $\ell_p$ norms with $p > 1$, they showed inapproximability within some constant factor (depending on $p$) and left open showing such hardness for arbitrary constant factors. They also left open showing W[1]-hardness even of exact SVP in the $\ell_1$ norm.
翻译:我们证明任何固定的有限字段和输入距离约束参数的线性代码的最低距离问题(MDP)是W[1]硬度,很难在任何常数系数范围内估计任何固定的限定字段和输入距离约束参数的线性代码。我们也证明,对于在整数拉特上参数化的最短矢量问题(SVP),我们证明类似的结果。具体地说,我们证明,美元标准中美元值的SVP是W[1]硬度,接近任何固定的美元 >1美元和W[1]硬度,接近于一个接近2美元(美元=1美元)的系数。(我们在每个案例中显示的硬度在随机递减幅度下。)这些结果回答了Bhattacharya、Bonnet、Egri、Ghoshal、Karthik C.S.、Lin、Manurangsi和Marx(ACMMDP Journal,2021)在任何固定系数中留下的硬度。对于双线性代码和普通字段的硬度,它们也建立了相似的硬度。 对于SVP$=1的硬度标准,在1美元中显示硬度的硬度。