We consider the Maximum-weight Matching (MWM) problem in the streaming sliding window model of computation. In this model, the input consists of a sequence of weighted edges on a given vertex set $V$ of size $n$. The objective is to maintain an approximation of a maximum-weight matching in the graph spanned by the $L$ most recent edges, for some integer $L$, using as little space as possible. Prior to our work, the state-of-the-art results were a $(3.5+\varepsilon)$-approximation algorithm for MWM by Biabani et al. [ISAAC'21] and a $(3+\varepsilon)$-approximation for (unweighted) Maximum Matching (MM) by Crouch et al. [ESA'13]. Both algorithms use space $\tilde{O}(n)$. We give the following results: 1. We give a $(2+\varepsilon)$-approximation algorithm for MWM with space $\tilde{O}(\sqrt{nL})$. Under the reasonable assumption that the graphs spanned by the edges in each sliding window are simple, our algorithm uses space $\tilde{O}(n \sqrt{n})$. 2. In the $\tilde{O}(n)$ space regime, we give a $(3+\varepsilon)$-approximation algorithm for MWM, thereby closing the gap between the best-known approximation ratio for MWM and MM. Similar to Biabani et al.'s MWM algorithm, both our algorithms execute multiple instances of the $(2+\varepsilon)$-approximation $\tilde{O}(n)$-space streaming algorithm for MWM by Paz and Schwartzman [SODA'17] on different portions of the stream. Our improvements are obtained by selecting these substreams differently. Furthermore, our $(2+\varepsilon)$-approximation algorithm runs the Paz-Schwartzman algorithm in reverse direction over some parts of the stream, and in forward direction over other parts, which allows for an improved approximation guarantee at the cost of increased space requirements.


翻译:我们认为在滚动滑动窗口计算模型中存在最大重量匹配(MWM)问题。 在这个模型中, 输入由给定的顶端设定的加权边距序列 $V 美元大小。 目标是在图形中保持最大重量匹配的近似值, 以最近一点的边距为美元, 使用尽可能小的空间 。 在我们工作之前, 最新的结果是 Biabani 和 Al. [ SAAC' 21] 给MWM 设定的 $( 3. Varepsl) 平流比值比值比值比值比值的比值比值比值比值的比值比值比值 。 两种算都使用了空间 $tilde{O} 最大比值比值的比值比值比值比值比值比值比值的比值比值( =2\ valepsl) 和比值比值比值比值比值比值的M( =) 我们的比值比值比值比值比值比值比值比值比值比值比值比值比值增加。

0
下载
关闭预览

相关内容

滑动窗口概念不仅存在于数据链路层,也存在于传输层,两者有不同的协议,但基本原理是相近的。其中一个重要区别是,一个是针对于帧的传送,另一个是字节数据的传送。
专知会员服务
26+阅读 · 2021年4月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月4日
Arxiv
0+阅读 · 2023年3月2日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员