Typical learning curves for Soft Margin Classifiers (SMCs) learning both realizable and unrealizable tasks are determined using the tools of Statistical Mechanics. We derive the analytical behaviour of the learning curves in the regimes of small and large training sets. The generalization errors present different decay laws towards the asymptotic values as a function of the training set size, depending on general geometrical characteristics of the rule to be learned. Optimal generalization curves are deduced through a fine tuning of the hyperparameter controlling the trade-off between the error and the regularization terms in the cost function. Even if the task is realizable, the optimal performance of the SMC is better than that of a hard margin Support Vector Machine (SVM) learning the same rule, and is very close to that of the Bayesian classifier.


翻译:使用统计机械学工具,确定SOMC学习可实现和无法实现任务的典型学习曲线。我们从小型和大型培训组体制中得出学习曲线的分析行为。一般化错误将不同的衰变法作为非现变法作为培训组规模的函数,这取决于所要学习规则的一般几何特点。通过对控制成本函数中错误与正规化条件之间的权衡的超参数进行微调,得出了最佳的通用曲线。即使任务可以实现,SMC的最佳性能也好于硬边支持矢量机(SVM)学习相同规则,而且非常接近Bayesian分类器。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
9+阅读 · 2019年4月19日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年10月11日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
9+阅读 · 2019年4月19日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年10月11日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
9+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员