Data-driven and deep learning approaches have demonstrated to have the potential of replacing classical constitutive models for complex materials, displaying path-dependency and possessing multiple inherent scales. Yet, the necessity of structuring constitutive models with an incremental formulation has given rise to data-driven approaches where physical quantities, e.g. deformation, blend with artificial, non-physical ones, such as the increments in deformation and time. Neural networks and the consequent constitutive models depend, thus, on the particular incremental formulation, fail in identifying material representations locally in time, and suffer from poor generalization. Here, we propose a new approach which allows, for the first time, to decouple the material representation from the incremental formulation. Inspired by the Thermodynamics-based Artificial Neural Networks (TANN) and the theory of the internal variables, the evolution TANN (eTANN) are continuous-time, thus independent of the aforementioned artificial quantities. Key feature of the proposed approach is the discovery of the evolution equations of the internal variables in the form of ordinary differential equations, rather than in an incremental discrete-time form. In this work, we focus attention to juxtapose and show how the various general notions of solid mechanics are implemented in eTANN. The laws of thermodynamics are hardwired in the structure of the network and allow predictions which are always consistent. We propose a methodology that allows to discover, from data and first principles, admissible sets of internal variables from the microscopic fields in complex materials. The capabilities as well as the scalability of the proposed approach are demonstrated through several applications involving a broad spectrum of complex material behaviors, from plasticity to damage and viscosity.
翻译:由数据驱动的深层次学习方法证明,有可能取代复杂材料的古典结构模型,显示路径依赖,并具有多种内在规模;然而,以递增配方构建构成模型的必要性已导致以数据驱动的方法,其中物理数量,例如变形,与人工和非物理混合,如变形和时间增量。神经网络和随之形成的构成模型取决于特定的递增配制,因此取决于特定的递增配方制,无法及时确定当地的物质表现,并受到不甚一般化的影响。在这里,我们建议了一种新的方法,首次允许将材料表述与递增配方脱钩。受基于热动力的人工神经网络(TANN)和内部变量理论的启发,这些物理数量是变异的,因此与上述人工数量无关。拟议方法的主要特征是发现以普通变异异方形式出现的内部变量的进化方程式,而不是以递增离离异式的变异性变异性变异性模型,在不断变异的变异的变异模型中,我们通过这项工作的焦点是一系列变异的变异法,我们通过一系列的变异的变态和变异的变异的变异的变法,在不断的变变的变的变异的变异的变式的变式的变式的变动的变式的变式的变式的变式的变式的变式的变式的变式的变式中,在不断变的变式的变的变式的变的变的变的变的变的变的变法中,在的变法中,在不断变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变,在的变的变的变的变的变的变的变的变的变的变的变的变,在的变,在的变的变的变的变的变的变的变的变的变的变的变的