The Number needed to treat (NNT) is an efficacy index defined as the average number of patients needed to treat to attain one additional treatment benefit. In observational studies, specifically in epidemiology, the adequacy of the populationwise NNT is questionable since the exposed group characteristics may substantially differ from the unexposed. To address this issue, groupwise efficacy indices were defined: the Exposure Impact Number (EIN) for the exposed group and the Number Needed to be Exposed (NNE) for the unexposed. Each defined index answers a unique research question since it targets a unique sub-population. In observational studies, the group allocation is typically affected by confounders that might be unmeasured. The available estimation methods that rely either on randomization or the sufficiency of the measured covariates for confounding control will result in inconsistent estimators of the true NNT (EIN, NNE) in such settings. Using Rubin's potential outcomes framework, we explicitly define the NNT and its derived indices as causal contrasts. Next, we introduce a novel method that uses instrumental variables to estimate the three aforementioned indices in observational studies. We present two analytical examples and a corresponding simulation study. The simulation study illustrates that the novel estimators are statistically consistent, unlike the previously available methods, and their analytical confidence intervals' empirical coverage rates converge to their nominal values. Finally, a real-world data example of an analysis of the effect of vitamin D deficiency on the mortality rate is presented.
翻译:暂无翻译