Purpose: The Targeted Learning roadmap provides a systematic guide for generating and evaluating real-world evidence (RWE). From a regulatory perspective, RWE arises from diverse sources such as randomized controlled trials that make use of real-world data, observational studies, and other study designs. This paper illustrates a principled approach to assessing the validity and interpretability of RWE. Methods: We applied the roadmap to a published observational study of the dose-response association between ritodrine hydrochloride and pulmonary edema among women pregnant with twins in Japan. The goal was to identify barriers to causal effect estimation beyond unmeasured confounding reported by the study's authors, and to explore potential options for overcoming the barriers that robustify results. Results: Following the roadmap raised issues that led us to formulate alternative causal questions that produced more reliable, interpretable RWE. The process revealed a lack of information in the available data to identify a causal dose-response curve. However, under explicit assumptions the effect of treatment with any amount of ritodrine versus none, albeit a less ambitious parameter, can be estimated from data. Conclusion: Before RWE can be used in support of clinical and regulatory decision-making, its quality and reliability must be systematically evaluated. The TL roadmap prescribes how to carry out a thorough, transparent, and realistic assessment of RWE. We recommend this approach be a routine part of any decision-making process.


翻译:目标学习路线图为产生和评价现实世界证据提供了系统指南(RWE)。从监管的角度来看,REWE来自多种来源,例如利用真实世界数据、观察研究和其他研究设计进行随机控制试验,以利用真实世界数据、观察研究和其他研究设计。本文件说明了评估RWE有效性和可解释性的原则性方法。方法:我们将路线图应用于对日本双胞胎怀孕妇女血清和肺水肿之间的剂量反应关联的公开观测研究。从监管角度而言,目标是查明影响因果估计的障碍,而不是研究作者所报告的无法衡量的混杂因素,并探讨克服巩固成果的障碍的可能选择。结果:路线图提出问题,导致我们制定产生更可靠、可解释RWE的替代因果问题。 方法:我们将路线图应用于已公布的关于日本双胞胎孕妇血清和肺水肿之间剂量反应曲线的观测研究。然而,根据明确的假设,可以从数据中估算出任何程度的治疗效果相对于任何程度的治疗的效果,尽管其参数并不那么雄心勃勃。结论:在RWE作出例行决策之前,必须系统地评估其可靠性和临床决定的透明性。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年9月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员