Electronic Medical Records (EMRs) contain clinical narrative text that is of great potential value to medical researchers. However, this information is mixed with Personally Identifiable Information (PII) that presents risks to patient and clinician confidentiality. This paper presents an end-to-end deidentification framework to automatically remove PII from Australian hospital discharge summaries. Our corpus included 600 hospital discharge summaries which were extracted from the EMRs of two principal referral hospitals in Sydney, Australia. Our end-to-end de-identification framework consists of three components: 1) Annotation: labelling of PII in the 600 hospital discharge summaries using five pre-defined categories: person, address, date of birth, individual identification number, phone/fax number; 2) Modelling: training six named entity recognition (NER) deep learning base-models on balanced and imbalanced datasets; and evaluating ensembles that combine all six base-models, the three base-models with the best F1 scores and the three base-models with the best recall scores respectively, using token-level majority voting and stacking methods; and 3) De-identification: removing PII from the hospital discharge summaries. Our results showed that the ensemble model combined using the stacking Support Vector Machine (SVM) method on the three base-models with the best F1 scores achieved excellent results with a F1 score of 99.16% on the test set of our corpus. We also evaluated the robustness of our modelling component on the 2014 i2b2 de-identification dataset. Our ensemble model, which uses the token-level majority voting method on all six basemodels, achieved the highest F1 score of 96.24% at strict entity matching and the highest F1 score of 98.64% at binary token-level matching compared to two state-of-the-art methods.
翻译:64 电子医疗记录(EMR)包含对医学研究人员具有巨大潜在价值的临床叙述文本。然而,这一信息与给病人和临床保密带来风险的个人识别信息(PII)混杂在一起。本文展示了一个端到端的识别框架,以自动将PII从澳大利亚医院的出院摘要中删除。我们的文件包括600份医院出院摘要,摘自澳大利亚悉尼两家主要转诊医院的离院记录(EMR)中。我们的端到端的诊断框架包括三个组成部分:(1) 注释:在600份医院出院摘要中贴上PII标签,使用五个预定义类别:个人、地址、出生日期、个人识别号码、电话/传真号码;(2) 模型:在平衡和不平衡的数据集中培训六个命名实体识别(NER)深学习基模;以及评估将所有六个基本模型、三个基模与最好的F1分数和三个基础模型分别使用最稳性评分的F1 多数投票和堆叠方法的组合:在医院最低一级删除 PII 和最高等级数据库1 使用我们最优级的FSDSDM 的排序的排序数据。我们最起码的排名的模型的模型的模型,我们得出了2014年的模型的模型的模型的模型的成绩。