Random feature methods have been successful in various machine learning tasks, are easy to compute, and come with theoretical accuracy bounds. They serve as an alternative approach to standard neural networks since they can represent similar function spaces without a costly training phase. However, for accuracy, random feature methods require more measurements than trainable parameters, limiting their use for data-scarce applications or problems in scientific machine learning. This paper introduces the sparse random feature expansion to obtain parsimonious random feature models. Specifically, we leverage ideas from compressive sensing to generate random feature expansions with theoretical guarantees even in the data-scarce setting. In particular, we provide generalization bounds for functions in a certain class (that is dense in a reproducing kernel Hilbert space) depending on the number of samples and the distribution of features. The generalization bounds improve with additional structural conditions, such as coordinate sparsity, compact clusters of the spectrum, or rapid spectral decay. In particular, by introducing sparse features, i.e. features with random sparse weights, we provide improved bounds for low order functions. We show that the sparse random feature expansions outperforms shallow networks in several scientific machine learning tasks.


翻译:随机特性方法在各种机器学习任务中是成功的,很容易计算,并且具有理论精确度。它们可以作为标准神经网络的替代方法,因为它们可以代表类似的功能空间而无需花费培训阶段。然而,为了准确性,随机特性方法需要比可训练参数更多的测量,限制其用于数据偏差应用或科学机器学习中的问题。本文介绍了稀疏随机特性扩展,以获得有腐蚀性的随机特性模型。具体地说,我们利用压缩感应的想法来产生随机特性扩展,同时提供理论保证,甚至数据偏差设置。特别是,我们根据样品的数量和特征分布,为某类(在再生内核Hilbert空间中密集的)的功能提供一般化界限。一般特性界限随着额外的结构条件而改善,例如协调宽度、频谱的紧凑集群或快速光谱衰减。我们通过引入稀疏特性,即随机稀散重量特征,为低顺序功能提供了改进的界限。我们显示,在几个科学网络中,随机特性扩展的随机特性扩展超出了浅质的网络。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
18+阅读 · 2021年3月16日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
3+阅读 · 2018年10月18日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关论文
Top
微信扫码咨询专知VIP会员