Fuels with high-knock resistance enable modern spark-ignition engines to achieve high efficiency and thus low CO2 emissions. Identification of molecules with desired autoignition properties indicated by a high research octane number and a high octane sensitivity is therefore of great practical relevance and can be supported by computer-aided molecular design (CAMD). Recent developments in the field of graph machine learning (graph-ML) provide novel, promising tools for CAMD. We propose a modular graph-ML CAMD framework that integrates generative graph-ML models with graph neural networks and optimization, enabling the design of molecules with desired ignition properties in a continuous molecular space. In particular, we explore the potential of Bayesian optimization and genetic algorithms in combination with generative graph-ML models. The graph-ML CAMD framework successfully identifies well-established high-octane components. It also suggests new candidates, one of which we experimentally investigate and use to illustrate the need for further auto-ignition training data.
翻译:高孔阻力燃料使现代火花点火发动机能够达到高效率,从而降低二氧化碳排放量。因此,用高辛烷含量和高辛烷敏感度研究显示的预期自动点火特性确定分子具有很强的实际意义,并可以得到计算机辅助分子设计(CAMD)的支持。图形机学习(graph-ML)领域的最新发展为CAMD提供了有希望的新工具。我们提议了一个模块式图形-ML CAMD框架,将基因化图形-ML模型与图形神经网络和优化相结合,以便能够在连续的分子空间设计具有预期点火特性的分子。我们特别探索了Bayesian优化和遗传算法与基因化图形-ML模型相结合的潜力。图形-MLCAM框架成功地确定了已确立的高浓度成分。它也提出了新的候选人,我们试验性地调查和使用其中之一来说明进一步进行自动点火培训的必要性。