Learning expressive molecular representations is crucial to facilitate the accurate prediction of molecular properties. Despite the significant advancement of graph neural networks (GNNs) in molecular representation learning, they generally face limitations such as neighbors-explosion, under-reaching, over-smoothing, and over-squashing. Also, GNNs usually have high computational complexity because of the large-scale number of parameters. Typically, such limitations emerge or increase when facing relatively large-size graphs or using a deeper GNN model architecture. An idea to overcome these problems is to simplify a molecular graph into a small, rich, and informative one, which is more efficient and less challenging to train GNNs. To this end, we propose a novel molecular graph coarsening framework named FunQG utilizing Functional groups, as influential building blocks of a molecule to determine its properties, based on a graph-theoretic concept called Quotient Graph. By experiments, we show that the resulting informative graphs are much smaller than the molecular graphs and thus are good candidates for training GNNs. We apply the FunQG on popular molecular property prediction benchmarks and then compare the performance of a GNN architecture on the obtained datasets with several state-of-the-art baselines on the original datasets. By experiments, this method significantly outperforms previous baselines on various datasets, besides its dramatic reduction in the number of parameters and low computational complexity. Therefore, the FunQG can be used as a simple, cost-effective, and robust method for solving the molecular representation learning problem.


翻译:分子表达方式是有助于准确预测分子特性的关键。尽管在分子代表制学习方面石墨神经网络(GNNS)取得了显著进步,但它们一般都面临诸如邻居爆炸、影响不足、过度透透和过度隔热等限制。此外,由于参数数量庞大,GNNS通常具有很高的计算复杂性。通常,当面对相对大规模的图形或使用更深层次的GNN模型结构时,这种限制会出现或增加。克服这些问题的一个想法是将分子图简化成一个小型、丰富和丰富的信息型神经网络,这对于培训GNNS来说效率更高,挑战性更小。为此,我们提议建立一个名为FunQG的新型分子图形分析框架,利用功能组作为确定其特性的具有影响力的分子构件,基于一个叫作“引言图”的概念。我们通过实验发现,由此产生的信息性图表比分子图要小得多,因此成为培训GNNPS的良好人选。我们用FinQG的简单度代表方式,用这个基础模型来大幅降低GNS的原始数据。我们用了一些原始数据模型来比较。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
12+阅读 · 2021年7月26日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员