In this paper, dynamic deployment of Convolutional Neural Network (CNN) architecture is proposed utilizing only IoT-level devices. By partitioning and pipelining the CNN, it horizontally distributes the computation load among resource-constrained devices (called horizontal collaboration), which in turn increases the throughput. Through partitioning, we can decrease the computation and energy consumption on individual IoT devices and increase the throughput without sacrificing accuracy. Also, by processing the data at the generation point, data privacy can be achieved. The results show that throughput can be increased by 1.55x to 1.75x for sharing the CNN into two and three resource-constrained devices, respectively.
翻译:在本文中,提议动态部署进化神经网络(CNN)架构只使用IOT级设备。通过对CNN进行分割和管线,它将计算负荷横向分配给资源受限制的装置(所谓的横向合作),这反过来又增加了输送量。通过分割,我们可以减少单个IOT设备的计算和能量消耗,并在不牺牲准确性的情况下增加输送量。此外,通过在生成点处理数据,可以实现数据隐私。结果显示,共享CNN的通过量可增加1.55x至1.75x, 分成两个和三个资源受限制的装置。