The reliable operation of the electric power systems is supported by energy management systems (EMS) that provide monitoring and control functionalities. Contingency analysis is a critical application of EMS to evaluate the impacts of outage events based on the grid state variables, and allow system operators to prepare for potential system failures. However, false data injection attacks (FDIAs) against state estimation have demonstrated the possibility of compromising sensor measurements and consequently falsifying the estimated power system states. As a result, FDIAs may mislead the system operations and other EMS applications including contingency analysis and optimal power flow routines. In this paper, we assess the effect of FDIAs on contingency analysis and demonstrate that such attacks can affect the resulted number of contingencies in power systems. In order to mitigate the FDIA impact on contingency analysis algorithms, we propose CHIMERA, a hybrid attack-resilient state estimation approach that integrates model-based and data-driven methods. CHIMERA combines the physical grid information with a Long Short Term Memory (LSTM)-based deep learning model by considering a static loss of weighted least square errors and a dynamic loss of the difference between the temporal variations of the actual and the estimated active power. Our simulation experiments based on the load data from New York state demonstrate that CHIMERA can effectively mitigate 91.74% of the attack cases in which FDIAs can maliciously modify the contingency results.
翻译:应急分析是环管系统的一项关键应用,目的是根据电网状态变量评价断电事件的影响,使系统操作者能够为潜在的系统故障做好准备;然而,针对国家估算的虚假数据注入攻击表明,有可能损害传感器测量,从而扭曲估计电力系统状态。结果,外国直接投资管理局可能会误导系统运行和其他电管理系统应用,包括应急分析和最佳的恶意电流常规。在本文件中,我们评估外国直接投资管理局对应急分析的影响,并表明这类袭击可能影响电源系统意外事件的数量。为减轻外国直接投资管理局对应急分析算法的影响,我们提议采用综合基于模型和数据驱动方法的混合性袭击性状态估计方法。《全球电磁场评估》将物理网信息与基于长期短期记忆的深层次学习模型结合起来,考虑加权最小的错误的静态损失和动态性地丧失了基于电源系统的意外事件数量。为了减轻外国直接投资对应急分析算法的影响,我们提议采用一种耐受攻击性状态的混合估计方法,将电网格信息与基于长期短期记忆(LSTM)的深层次学习模式结合起来。我们考虑FDIA对基于实际和空间数据进行模拟的机压的机能实验,可以有效地显示,对纽约实际和机压进行实际数据进行实际变化。