User cold-start recommendation is a long-standing challenge for recommender systems due to the fact that only a few interactions of cold-start users can be exploited. Recent studies seek to address this challenge from the perspective of meta learning, and most of them follow a manner of parameter initialization, where the model parameters can be learned by a few steps of gradient updates. While these gradient-based meta-learning models achieve promising performances to some extent, a fundamental problem of them is how to adapt the global knowledge learned from previous tasks for the recommendations of cold-start users more effectively. In this paper, we develop a novel meta-learning recommender called task-adaptive neural process (TaNP). TaNP is a new member of the neural process family, where making recommendations for each user is associated with a corresponding stochastic process. TaNP directly maps the observed interactions of each user to a predictive distribution, sidestepping some training issues in gradient-based meta-learning models. More importantly, to balance the trade-off between model capacity and adaptation reliability, we introduce a novel task-adaptive mechanism. It enables our model to learn the relevance of different tasks and customize the global knowledge to the task-related decoder parameters for estimating user preferences. We validate TaNP on multiple benchmark datasets in different experimental settings. Empirical results demonstrate that TaNP yields consistent improvements over several state-of-the-art meta-learning recommenders.
翻译:用户冷启动建议是建议系统面临的长期挑战,因为只有冷启动用户的少数互动才能得到利用。最近的研究力求从元学习的角度应对这一挑战,其中多数采用参数初始化的方式,模型参数初始化的方式可以通过几步梯度更新来学习模型参数参数参数参数参数参数。这些梯度基元学习模型在某种程度上取得了有希望的绩效,但它们的一个根本问题是如何使从以往任务中学到的全球知识更有成效地适应冷启动用户建议。在本文中,我们开发了一个叫作任务适应神经神经过程(TANP)的新元学习建议器。TANP是神经过程大家庭的新成员,向每个用户提出建议与相应的随机化进程相联系。TANP直接绘制每个用户观察到的预测性互动图,在基于梯度的元学习模型模型中回避一些培训问题。更重要的是,为了平衡模型能力与适应可靠性之间的取舍,我们引入了一个新的任务适应机制。TANP是神经过程的一个新成员,让我们的模型能够了解向每个用户提出建议,每个用户提出建议与相应的随机化过程。TANP直接描绘每个用户观察到的模型,并定制不同的实验性模型,用以验证不同的模型,用以验证不同的模型的模型的模型,用以验证不同的模型,用以验证不同的测试与结果。