We introduce the algorithm Bayesian Optimization (BO) with Fictitious Play (BOFiP) for the optimization of high dimensional black box functions. BOFiP decomposes the original, high dimensional, space into several sub-spaces defined by non-overlapping sets of dimensions. These sets are randomly generated at the start of the algorithm, and they form a partition of the dimensions of the original space. BOFiP searches the original space with alternating BO, within sub-spaces, and information exchange among sub-spaces, to update the sub-space function evaluation. The basic idea is to distribute the high dimensional optimization across low dimensional sub-spaces, where each sub-space is a player in an equal interest game. At each iteration, BO produces approximate best replies that update the players belief distribution. The belief update and BO alternate until a stopping condition is met. High dimensional problems are common in real applications, and several contributions in the BO literature have highlighted the difficulty in scaling to high dimensions due to the computational complexity associated to the estimation of the model hyperparameters. Such complexity is exponential in the problem dimension, resulting in substantial loss of performance for most techniques with the increase of the input dimensionality. We compare BOFiP to several state-of-the-art approaches in the field of high dimensional black box optimization. The numerical experiments show the performance over three benchmark objective functions from 20 up to 1000 dimensions. A neural network architecture design problem is tested with 42 up to 911 nodes in 6 up to 92 layers, respectively, resulting into networks with 500 up to 10,000 weights. These sets of experiments empirically show that BOFiP outperforms its competitors, showing consistent performance across different problems and increasing problem dimensionality.


翻译:我们引入了配有维度高维黑盒功能优化功能的算法 Bayesian Optimo化( BO), 并配有 Fictititious Play (BOFiP), 用于优化高维黑盒功能。 BOFiP 将原始的、 高维的空间分解成由非重叠的维度组定义的几个子空间。 这些组合是在算法开始时随机生成的, 形成原始空间的维度分隔。 BOFiP 在子空间的分空间内部, 以及分空间之间的信息交流, 以更新子空间函数的次空间。 基本的想法是将高维优化的功能分布在低维的黑盒上, 将每个子空间分层分解成一个玩家, 由非重叠的维度空间分层分解成多个子空间。 这些组合是更新玩家信仰分布的最佳回应, 在满足停止状态之前, 高度的问题在实际应用中是常见的, 几个维度问题在BOO文献中突出的维度上, 与计算复杂性到与计算复杂度的深度的比度评估, 。 在高维度的精确的精确度上, 显示, 高维度的精确度实验中, 以显示, 高基度的精确度的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行方式将显示的运行方式的运行的运行方式的运行方式的运行的运行状态的运行方式的运行方式的运行性 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年6月15日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
6+阅读 · 2020年10月8日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员