We present Path Integral Sampler~(PIS), a novel algorithm to draw samples from unnormalized probability density functions. The PIS is built on the Schr\"odinger bridge problem which aims to recover the most likely evolution of a diffusion process given its initial distribution and terminal distribution. The PIS draws samples from the initial distribution and then propagates the samples through the Schr\"odinger bridge to reach the terminal distribution. Applying the Girsanov theorem, with a simple prior diffusion, we formulate the PIS as a stochastic optimal control problem whose running cost is the control energy and terminal cost is chosen according to the target distribution. By modeling the control as a neural network, we establish a sampling algorithm that can be trained end-to-end. We provide theoretical justification of the sampling quality of PIS in terms of Wasserstein distance when sub-optimal control is used. Moreover, the path integrals theory is used to compute importance weights of the samples to compensate for the bias induced by the sub-optimality of the controller and time-discretization. We experimentally demonstrate the advantages of PIS compared with other start-of-the-art sampling methods on a variety of tasks.
翻译:我们提出路径综合样本~(PIS),这是从未正常的概率密度函数中提取样本的一种新型算法。 PIS建在Schr\'odinger桥问题上,目的是从最初的分布和终端分布中恢复扩散过程最有可能的演变。 PIS从最初的分布和终端分布中抽取样本,然后通过Schr\'odinger桥将样本传播到终端分布中。我们应用Girsanov 理论,先简单扩散,将PIS发展成一个随机最佳控制问题,其运行成本是控制能量和终端成本根据目标分布所选择的。通过将控制模型建成一个神经网络,我们建立了可以经过培训的终端到终端的取样算法。我们从理论角度解释了在使用亚最佳控制时,PIS的取样质量在瓦塞里斯坦距离上的质量。此外,我们使用路径集理理论来计算样品的重要性重量,以补偿控制器的亚优化性和时间分解造成的偏差。我们实验性地展示了PIS其他开始的取样方法的优势。