Two simple undirected graphs are cospectral if their respective adjacency matrices have the same multiset of eigenvalues. Cospectrality yields an equivalence relation on the family of graphs which is provably weaker than isomorphism. In this paper, we study cospectrality in relation to another well-studied relaxation of isomorphism, namely $k$-dimensional Weisfeiler-Leman ($k$-WL) indistinguishability. Cospectrality with respect to standard graph matrices such as the adjacency or the Laplacian matrix yields a strictly finer equivalence relation than $2$-WL indistinguishability. We show that individualising one vertex plus running $1$-WL already subsumes cospectrality with respect to all such graph matrices. Building on this result, we resolve an open problem of F\"urer (2010) about spectral invariants. Looking beyond $2$-WL, we devise a hierarchy of graph matrices generalising the adjacency matrix such that $k$-WL indistinguishability after a fixed number of iterations can be captured as a spectral condition on these matrices. Precisely, we provide a spectral characterisation of $k$-WL indistinguishability after $d$ iterations, for $k,d \in \mathbb{N}$. Our results can be viewed as characterisations of homomorphism indistinguishability over certain graph classes in terms of matrix equations. The study of homomorphism indistinguishability is an emerging field, to which we contribute by extending the algebraic framework of Man\v{c}inska and Roberson (2020) and Grohe et al. (2022).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Noise-Resilient Designs for Optical Neural Networks
Arxiv
0+阅读 · 2023年8月11日
Arxiv
0+阅读 · 2023年8月11日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员