Motivated by the explosive computing capabilities at end user equipments, as well as the growing privacy concerns over sharing sensitive raw data, a new machine learning paradigm, named federated learning (FL) has emerged. By training models locally at each client and aggregating learning models at a central server, FL has the capability to avoid sharing data directly, thereby reducing privacy leakage. However, the traditional FL framework heavily relies on a single central server and may fall apart if such a server behaves maliciously. To address this single point of failure issue, this work investigates a blockchain assisted decentralized FL (BLADE-FL) framework, which can well prevent the malicious clients from poisoning the learning process, and further provides a self-motivated and reliable learning environment for clients. In detail, the model aggregation process is fully decentralized and the tasks of training for FL and mining for blockchain are integrated into each participant. In addition, we investigate the unique issues in this framework and provide analytical and experimental results to shed light on possible solutions.


翻译:由于终端用户设备中的爆炸计算能力,以及人们日益对分享敏感原始数据的隐私问题的关注,出现了一种新的机器学习模式,称为联合学习(FL),通过在每个客户中进行当地培训模式,并在中央服务器上汇总学习模式,FL有能力避免直接共享数据,从而减少隐私泄漏;然而,传统的FL框架严重依赖单一中央服务器,如果服务器行为恶意,则可能崩溃;为解决这一单一的故障问题,这项工作调查了一个块链帮助分散的FL(BLADE-FL)框架,该框架可以很好地防止恶意客户中毒学习过程,并进一步为客户提供一个自我驱动和可靠的学习环境;详细说来,模型汇总进程是完全分散的,对FL的培训任务和块链采矿任务被纳入每个参与者;此外,我们调查这一框架中的独特问题,并提供分析和实验结果,说明可能的解决办法。

0
下载
关闭预览

相关内容

专知会员服务
35+阅读 · 2021年7月9日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
专知会员服务
35+阅读 · 2021年7月9日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员