In the past few decades, machine learning has revolutionized data processing for large scale applications. Simultaneously, increasing privacy threats in trending applications led to the redesign of classical data training models. In particular, classical machine learning involves centralized data training, where the data is gathered, and the entire training process executes at the central server. Despite significant convergence, this training involves several privacy threats on participants' data when shared with the central cloud server. To this end, federated learning has achieved significant importance over distributed data training. In particular, the federated learning allows participants to collaboratively train the local models on local data without revealing their sensitive information to the central cloud server. In this paper, we perform a convergence comparison between classical machine learning and federated learning on two publicly available datasets, namely, logistic-regression-MNIST dataset and image-classification-CIFAR-10 dataset. The simulation results demonstrate that federated learning achieves higher convergence within limited communication rounds while maintaining participants' anonymity. We hope that this research will show the benefits and help federated learning to be implemented widely.


翻译:在过去几十年中,机器学习使大规模应用的数据处理发生了革命性的变化。与此同时,趋势应用中的隐私威胁日益增加,导致古典数据培训模式的重新设计。特别是,古典机器学习涉及中央数据培训,在收集数据的地方,整个培训过程在中央服务器进行。尽管这种培训有相当的趋同性,但在与中央云服务器共享时,参与者的数据受到若干隐私威胁。为此,联合学习在分发数据培训中取得了重要的意义。特别是,联合学习使参与者能够合作培训当地数据模型,而不会向中央云服务器透露其敏感信息。在本文中,我们比较了经典机器学习和在两个公开数据集(即后勤-反向-MNIST数据集和图像分类-CIFAR-10数据集)上进行的联合学习。模拟结果显示,在有限的通信回合中,热学在保持参与者的匿名性的同时,实现了更高程度的趋同。我们希望,这项研究将展示其益处,并有助于在广泛实施进化学习。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
117+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
14+阅读 · 2020年12月17日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
相关论文
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
14+阅读 · 2020年12月17日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
6+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员