We give a new combinatorial explanation for well-known relations between determinants and traces of matrix powers. Such relations can be used to obtain polynomial-time and poly-logarithmic space algorithms for the determinant. Our new explanation avoids linear-algebraic arguments and instead exploits a classical connection between subgraph and homomorphism counts.
翻译:我们给出了新的组合解释,说明决定因素和矩阵力量痕迹之间众所周知的关系。 这种关系可以用来获得多米时和多对数空间算法作为决定因素。 我们的新解释避免了线性代数论,而是利用了子词和同质主义数字之间的经典联系。