The conforming finite element Galerkin method is applied to discretise in the spatial direction for a class of strongly nonlinear parabolic problems. Using elliptic projection of the associated linearised stationary problem with Gronwall type result, optimal error estimates are derived, when piecewise polynomials of degree $r\geq 1$ are used, which improve upon earlier results of Axelsson [Numer. Math. 28 (1977), pp. 1-14] requiring for 2d $r\geq 2$ and for 3d $r\geq 3.$ Based on quasi-projection technique introduced by Douglas {\it et al.} [Math. Comp.32 (1978),pp. 345-362], superconvergence result for the error between Galerkin approximation and approximation through quasi-projection is established for the semidiscrete Galerkin scheme. Further, {\it a priori} error estimates in Sobolev spaces of negative index are derived. Moreover, in a single space variable, nodal superconvergence results between the true solution and Galerkin approximation are established.
翻译:相符合的有限元素 Galerkin 方法用于对高度非线性抛物线问题类别在空间方向上的离散。使用对Gronwall型结果产生的相关线性定点问题的椭圆性预测,当使用小巧的多角度度多数值$r\geq 1美元时,得出最佳误差估计数,这改善了Axelsson[Numer. Math. 28(1977年),pp.1-14]早先的结果,要求2d $r\geq 2美元和3d $r\geq 3.美元,根据Douglas 等采用的准预测技术[Math. Com.32 (1978),pp.345-362],为半偏差加勒金近似近似和近近似之间差之间的误差,确定了超趋一致的结果。此外,还得出了Soboleve的负指数空间空间空间的误差估计数。此外,在单一空间变量中,确定了真实解决办法和Galerkin近似接近之间无交点的超相一致结果。