A class of graphs $\mathscr{C}$ is monadically stable if for any unary expansion $\widehat{\mathscr{C}}$ of $\mathscr{C}$, one cannot interpret, in first-order logic, arbitrarily long linear orders in graphs from $\widehat{\mathscr{C}}$. It is known that nowhere dense graph classes are monadically stable; these encompass most of the studied concepts of sparsity in graphs, including graph classes that exclude a fixed topological minor. On the other hand, monadic stability is a property expressed in purely model-theoretic terms and hence it is also suited for capturing structure in dense graphs. For several years, it has been suspected that one can create a structure theory for monadically stable graph classes that mirrors the theory of nowhere dense graph classes in the dense setting. In this work we provide a step in this direction by giving a characterization of monadic stability through the Flipper game: a game on a graph played by Flipper, who in each round can complement the edge relation between any pair of vertex subsets, and Connector, who in each round localizes the game to a ball of bounded radius. This is an analog of the Splitter game, which characterizes nowhere dense classes of graphs (Grohe, Kreutzer, and Siebertz, J.ACM'17). We give two different proofs of our main result. The first proof uses tools from model theory, and it exposes an additional property of monadically stable graph classes that is close in spirit to definability of types. Also, as a byproduct, we give an alternative proof of the recent result of Braunfeld and Laskowski (arXiv 2209.05120) that monadic stability for graph classes coincides with existential monadic stability. The second proof relies on the recently introduced notion of flip-wideness (Dreier, M\"ahlmann, Siebertz, and Toru\'nczyk, arXiv 2206.13765) and provides an efficient algorithm to compute Flipper's moves in a winning strategy.


翻译:平面图 $137cr{C} $ 190 类是月度稳定的, 如果对于任何非正常的扩张来说, $\ 全方位的 lasthcr{C} $\ mathscr{C} 美元, 在一阶逻辑中, 人们无法解释 $\ 全方位的图表中任意长线性命令 $137cr{C} 。 众所周知, 高密度的图形类在月度上是稳定的; 这些包含大部分研究过的共性概念, 包括不包括固定表层小的平面分析类。 另一方面, 月度稳定是一种纯粹以模型- 数字级表示的属性, 因此它也适合以密度的图形形式捕捉结构。 几年来, 人们一直怀疑, 一个任意稳定的图形类会创建一个结构理论性理论, 反映不高密度的图形类的理论。 在这项工作中, 通过 Flipper 将调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调和平面图理。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月22日
Core-Elements for Classical Linear Regression
Arxiv
0+阅读 · 2023年3月17日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员