Extreme weather events have significant consequences, dominating the impact of climate on society, but occur with small probabilities that are inherently difficult to compute. A rare event with a 100-year return period takes, on average, 100 years of simulation time to appear just once. Computational constraints limit the resolution of models used for such long integrations, but high resolution is necessary to resolve extreme event dynamics. We demonstrate a method to exploit short-term forecasts from a high-fidelity weather model and lasting only weeks rather than centuries, to estimate the long-term climatological statistics of rare events. Using only two decades of forecast data, we are able to robustly estimate return times on the centennial scale. We use the mathematical framework of transition path theory to compute the rate and seasonal distribution of sudden stratospheric warming (SSW) events of varying intensity. We find SSW rates consistent with those derived from reanalysis data, but with greater precision. Our method performs well even with simple feature spaces of moderate dimension, and holds potential for assessing extreme events beyond SSW, including heat waves and floods.
翻译:极端天气事件具有重大的后果,它支配着气候对社会的影响,但发生的概率很小,这必然难以计算。一个100年返回期的罕见事件平均需要100年的模拟时间才出现一次。计算制约因素限制了用于这种长期整合的模型的分辨率,但解决极端事件动态需要高分辨率。我们展示了一种方法,利用从高不测天气模型得出的短期预报来估计稀有事件的长期气候统计,时间只有几个星期而不是几个世纪。我们仅使用20年的预测数据,就能够有力地估计百年规模的返回时间。我们利用过渡路径理论的数学框架来计算不同强度的突然平流变暖事件的速度和季节性分布。我们发现SW的速率与再分析数据得出的速率一致,但更精确。我们的方法甚至使用中度的简单特征空间,并具有评估南冰洋以外极端事件(包括热波和洪水)的潜力。