Understanding extreme events and their probability is key for the study of climate change impacts, risk assessment, adaptation, and the protection of living beings. In this work we develop a methodology to build forecasting models for extreme heatwaves. These models are based on convolutional neural networks, trained on extremely long 8,000-year climate model outputs. Because the relation between extreme events is intrinsically probabilistic, we emphasise probabilistic forecast and validation. We demonstrate that deep neural networks are suitable for this purpose for long lasting 14-day heatwaves over France, up to 15 days ahead of time for fast dynamical drivers (500 hPa geopotential height fields), and also at much longer lead times for slow physical drivers (soil moisture). The method is easily implemented and versatile. We find that the deep neural network selects extreme heatwaves associated with a North-Hemisphere wavenumber-3 pattern. We find that the 2 meter temperature field does not contain any new useful statistical information for heatwave forecast, when added to the 500 hPa geopotential height and soil moisture fields. The main scientific message is that training deep neural networks for predicting extreme heatwaves occurs in a regime of drastic lack of data. We suggest that this is likely the case for most other applications to large scale atmosphere and climate phenomena. We discuss perspectives for dealing with the lack of data regime, for instance rare event simulations, and how transfer learning may play a role in this latter task.
翻译:了解极端事件及其概率是研究气候变化影响、风险评估、适应和保护活生物体的关键。在这项工作中,我们开发了一种方法,用于建立极端热浪的预测模型。这些模型以共进神经网络为基础,经过长达8000年的极端气候模型输出培训。由于极端事件之间的关系本质上是概率性的,我们强调概率性预测和验证。我们证明深神经网络对于在法国进行长期的14天热波研究、风险评估、适应以及保护活生物来说是合适的。在这项工作中,我们开发了一种方法,用来为极端热浪的快速驱动器(500千帕地缘潜能高度场)建立预测模型,同时在较长的引导时间里建立模型。这些模型很容易实施并具有多种功能。我们发现,深神经网络选择了与北海米斯热波波3型模式相关的极端热浪。我们发现,2米温度场并不包含任何新的热浪预报有用的统计信息,如果添加到500帕地缘高和土壤湿度场,则可以提前15天。主要的科学信息是,为预测最慢的物理驱动力动力动力动力驱动器(土壤湿度)而进行深神经网络培训的深度网络可以预测。该方法很容易实施。我们发现深神经系统会选择了与巨型大气变化中如何研究。我们学习。我们学习的系统, 缺乏数据系统会讨论其他的系统。