Efficient inference in high-dimensional models remains a central challenge in machine learning. This paper introduces the Gaussian Ensemble Belief Propagation (GEnBP) algorithm, a fusion of the Ensemble Kalman filter and Gaussian Belief Propagation (GaBP) methods. GEnBP updates ensembles by passing low-rank local messages over a graphical model. This combination inherits favourable qualities from each method. Ensemble techniques allow GEnBP to handle high-dimensional states, parameters and intricate, noisy, black-box generation processes. The use of local messages in a graphical model structure ensures that the approach can efficiently handle complex dependence structures. GEnBP is advantageous when the ensemble size may be considerably smaller than the inference dimension. This scenario often arises in fields such as spatiotemporal modelling, image processing and physical model inversion. GEnBP can be applied to general problem structures, including data assimilation, system identification and hierarchical models. Supporting code is available at https://github.com/danmackinlay/GEnBP
翻译:暂无翻译