Raman spectroscopy provides a vibrational profile of the molecules and thus can be used to uniquely identify different kind of materials. This sort of fingerprinting molecules has thus led to widespread application of Raman spectrum in various fields like medical dignostics, forensics, mineralogy, bacteriology and virology etc. Despite the recent rise in Raman spectra data volume, there has not been any significant effort in developing generalized machine learning methods for Raman spectra analysis. We examine, experiment and evaluate existing methods and conjecture that neither current sequential models nor traditional machine learning models are satisfactorily sufficient to analyze Raman spectra. Both has their perks and pitfalls, therefore we attempt to mix the best of both worlds and propose a novel network architecture RamanNet. RamanNet is immune to invariance property in CNN and at the same time better than traditional machine learning models for the inclusion of sparse connectivity. Our experiments on 4 public datasets demonstrate superior performance over the much complex state-of-the-art methods and thus RamanNet has the potential to become the defacto standard in Raman spectra data analysis
翻译:Raman光谱学提供了分子的振动剖面,因此可以用来独特地辨别不同种类的材料。这种指纹分子因此导致Raman谱谱在医学挖掘、法医、矿物学、细菌学和病毒学等各个领域的广泛应用。尽管最近Raman光谱数据量上升,但在为Raman光谱分析开发通用机器学习方法方面没有做出任何重大努力。我们研究、试验和评价现有的方法和推测,即目前的顺序模型和传统机器学习模型都不足以令人满意地分析Raman光谱。两者都有其潜伏和陷阱。因此,我们试图将两个世界的最好部分混合起来,并提出一个新的网络结构RamanNet。RamanNet不受CNN的无动性属性的影响,同时比传统的机器学习模型更好,以纳入稀少的连通性。我们在4个公共数据集上的实验表明,在非常复杂的状态方法上,因此RamanNet都有可能成为Raman光谱数据分析中的去法托标准。