Quantile regression is a powerful tool for learning the relationship between a scalar response and a multivariate predictor in the presence of heavier tails and/or data heterogeneity. In the present paper, we consider statistical inference for quantile regression with large-scale data in the increasing dimension regime. We provide a comprehensive study of a convolution-type smoothing approach to achieving an adequate approximation to computation and inference for quantile regression. The ensuing estimator, which we refer to as conquer, turns the non-differentiable quantile loss function into a twice-differentiable, globally convex, and locally strongly convex surrogate, which admits a fast and scalable Barzilai-Borwein gradient-based algorithm to perform optimization, and a Rademacher multiplier bootstrap method for statistical inference. In the theoretical investigations of the conquer estimator, we establish nonasymptotic error bounds on the Bahadur-Kiefer linearization, from which we show that the asymptotic normality of the smoothed quantile regression estimator holds under a weaker requirement on the dimension of the predictors than needed for the exact quantile regression estimator. Our numerical studies confirm the conquer estimator as a practical and reliable approach to large-scale inference for quantile regression.


翻译:量度回归是一个强大的工具, 用于在更重尾尾巴和(或)数据差异性更重的情况下, 学习星际反应和多变量预测器之间的关系。 在本文件中, 我们考虑以大尺度数据进行四分回归的统计推论, 在日益增强的维度系统中, 使用大尺度数据进行 。 我们全面研究进化型平滑方法, 以取得与计算和推算的足够接近, 微度回归。 随后的测算器, 我们称之为征服, 将不可区分的量级损失函数转换成一个两度差异的、 全球 convex, 以及 当地强烈的 convex 代孕育点, 从而接受快速和可缩放的巴齐莱- 伯文基梯度算法, 以及 用于统计误判的 Rademacher 乘数测器方法。 在征服估测器的理论调查中, 我们为巴哈杜尔- Kiefer 线化, 我们从中显示, 平整的回归性回归度平准度平整平整的平整的平平平平平平平的平平平的平平平平平平平的平平的平的平的平平的平平平的平平平平平平的平的平的平的平的平平平平的平的平的平的平的平的平的平平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月10日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员