In this work, we consider a multivariate regression model with one-sided errors. We assume for the regression function to lie in a general H\"{o}lder class and estimate it via a nonparametric local polynomial approach that consists of minimization of the local integral of a polynomial approximation lying above the data points. While the consideration of multivariate covariates offers an undeniable opportunity from an application-oriented standpoint, it requires a new method of proof to replace the established ones for the univariate case. The main purpose of this paper is to show the uniform consistency and to provide the rates of convergence of the considered nonparametric estimator for both multivariate random covariates and multivariate deterministic design points. To demonstrate the performance of the estimators, the small sample behavior is investigated in a simulation study in dimension two and three.
翻译:在这项工作中,我们考虑一个带有片面错误的多变量回归模型。 我们假设回归函数位于一个普通 H\"{o}lder 类中, 并通过一种非对称本地多元法来估计它, 其中包括将位于数据点之上的多变量近似的局部组成部分最小化。 虽然从应用导向的角度考虑多变量共变量提供了一个不可否认的机会, 但从应用导向的角度来看, 它需要一种新的证据方法来取代已经确立的单体案例。 本文的主要目的是显示统一的一致性, 并提供考虑过的多变量随机共变量和多变量确定性设计点的非参数估算器的趋同率。 要展示估算器的性能, 将在第二和三维的模拟研究中调查小样本行为。