Smart cities operate on computational predictive frameworks that collect, aggregate, and utilize data from large-scale sensor networks. However, these frameworks are prone to multiple sources of data and algorithmic bias, which often lead to unfair prediction results. In this work, we first demonstrate that bias persists at a micro-level both temporally and spatially by studying real city data from Chattanooga, TN. To alleviate the issue of such bias, we introduce Fairguard, a micro-level temporal logic-based approach for fair smart city policy adjustment and generation in complex temporal-spatial domains. The Fairguard framework consists of two phases: first, we develop a static generator that is able to reduce data bias based on temporal logic conditions by minimizing correlations between selected attributes. Then, to ensure fairness in predictive algorithms, we design a dynamic component to regulate prediction results and generate future fair predictions by harnessing logic rules. Evaluations show that logic-enabled static Fairguard can effectively reduce the biased correlations while dynamic Fairguard can guarantee fairness on protected groups at run-time with minimal impact on overall performance.
翻译:智慧城市运行在计算预测框架上,收集、汇总和利用来自大规模传感器网络的数据。然而,这些框架容易受到多个数据和算法偏见的影响,通常会导致不公平的预测结果。在这项工作中,我们首先通过研究田纳西州查塔努加市的真实数据,证明了偏差在微观层面上不断存在,同时在时间和空间上持续存在。为了缓解这种偏见问题,我们介绍了 Fairguard,这是一种基于微观层面时间逻辑的方法,用于在复杂的时间空间域中调整和生成公平的智慧城市策略。Fairguard 框架由两个阶段组成:首先,我们开发了一个静态生成器,能够通过最小化所选属性之间的关联来减少数据偏见。然后,为了确保预测算法的公平性,我们设计了一个动态组件,通过利用逻辑规则调整预测结果并生成未来公平的预测。评估结果表明,基于逻辑的静态 Fairguard 可以有效地减少偏差关联,而动态 Fairguard 可以在运行时保证受保护群体的公平性,并对整体性能产生最小的影响。