In many classification tasks, the set of target classes can be organized into a hierarchy. This structure induces a semantic distance between classes, and can be summarised under the form of a cost matrix, which defines a finite metric on the class set. In this paper, we propose to model the hierarchical class structure by integrating this metric in the supervision of a prototypical network. Our method relies on jointly learning a feature-extracting network and a set of class prototypes whose relative arrangement in the embedding space follows an hierarchical metric. We show that this approach allows for a consistent improvement of the error rate weighted by the cost matrix when compared to traditional methods and other prototype-based strategies. Furthermore, when the induced metric contains insight on the data structure, our method improves the overall precision as well. Experiments on four different public datasets - from agricultural time series classification to depth image semantic segmentation - validate our approach.
翻译:在许多分类任务中, 目标类别组可以分为等级。 这一结构可以在不同类别之间产生语义上的距离, 并且可以以成本矩阵的形式加以总结, 以成本矩阵的形式界定对类集的有限度量。 在本文中, 我们提议通过将这一指标纳入一个原型网络的监督, 来建模等级级结构。 我们的方法依赖于共同学习一个特征提取网络和一组类别原型, 其嵌入空间的相对安排遵循等级测量。 我们表明, 这种方法允许在与传统方法和其他原型战略相比, 持续改进成本矩阵加权的误差率。 此外, 当引导指标包含对数据结构的洞察力时, 我们的方法可以提高总体精确度。 对四个不同的公共数据集的实验 — 从农业时间序列分类到深度图像语义分化 — 验证了我们的方法 。