In many classification tasks, the set of target classes can be organized into a hierarchy. This structure induces a semantic distance between classes, and can be summarised under the form of a cost matrix, which defines a finite metric on the class set. In this paper, we propose to model the hierarchical class structure by integrating this metric in the supervision of a prototypical network. Our method relies on jointly learning a feature-extracting network and a set of class prototypes whose relative arrangement in the embedding space follows an hierarchical metric. We show that this approach allows for a consistent improvement of the error rate weighted by the cost matrix when compared to traditional methods and other prototype-based strategies. Furthermore, when the induced metric contains insight on the data structure, our method improves the overall precision as well. Experiments on four different public datasets - from agricultural time series classification to depth image semantic segmentation - validate our approach.


翻译:在许多分类任务中, 目标类别组可以分为等级。 这一结构可以在不同类别之间产生语义上的距离, 并且可以以成本矩阵的形式加以总结, 以成本矩阵的形式界定对类集的有限度量。 在本文中, 我们提议通过将这一指标纳入一个原型网络的监督, 来建模等级级结构。 我们的方法依赖于共同学习一个特征提取网络和一组类别原型, 其嵌入空间的相对安排遵循等级测量。 我们表明, 这种方法允许在与传统方法和其他原型战略相比, 持续改进成本矩阵加权的误差率。 此外, 当引导指标包含对数据结构的洞察力时, 我们的方法可以提高总体精确度。 对四个不同的公共数据集的实验 — 从农业时间序列分类到深度图像语义分化 — 验证了我们的方法 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
37+阅读 · 2020年9月12日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
Cross-Modal & Metric Learning 跨模态检索专题-2
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2020年8月7日
Arxiv
4+阅读 · 2019年11月25日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
Cross-Modal & Metric Learning 跨模态检索专题-2
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员