Computing persistent homology using Gaussian kernels is useful in the domains of topological data analysis and machine learning as shown by Phillips, Wang and Zheng [SoCG 2015]. However, contrary to the case of computing persistent homology using the Euclidean distance or even the $k$-distance, it is not known how to compute the persistent homology of high dimensional data using Gaussian kernels. In this paper, we consider a power distance version of the Gaussian kernel distance (GKPD) given by Phillips, Wang and Zheng, and show that the persistent homology of the \v{C}ech filtration of $P$ computed using the GKPD is approximately preserved. For datasets in $d$-dimensional Euclidean space, under a relative error bound of $\varepsilon \in [0,1]$, we obtain a dimensionality of $(i)$ $O(\varepsilon^{-2}\log^2 n)$ for $n$-point datasets and $(ii)$ $O(D\varepsilon^{-2}\log (Dr/\varepsilon))$ for datasets having diameter $r$ (up to a scaling factor). We use two main ingredients. The first one is a new decomposition of the squared radii of \v{C}ech simplices using the kernel power distance, in terms of the pairwise GKPDs between the vertices, which we state and prove. The second one is the Random Fourier Features (RFF) map of Rahimi and Recht [NeurIPS 2007], as used by Chen and Phillips [ALT 2017].
翻译:使用 Gaussian 内核计算高维数据的持久性同质学。 在本文中, 菲利普、 王和郑 提供的高端数据分析和机器学习领域使用NKPD。 但是, 与使用 Euclidean 距离甚至美元- 距离计算 $k美元计算 持久性同质学的情况相反, 尚不清楚如何用高斯内核来计算高维数据的持久性同质性。 本文中, 我们认为菲利普、 王和郑提供的高斯内核距离( GKPD) 的电源版本是 $( i) 美元( Varth) 的电源距离( GKPDD), 显示使用 GKPD 计算 $( 美元- 美元) 的 美元持续性同质化。 使用 美元- 元内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内